Dr.G.R.Damodaran College of Science

(Autonomous, affiliated to the Bharathiar University, recognized by the UGC)Reaccredited at the 'A' Grade Level by the NAAC and ISO 9001:2008 Certified CRISL rated 'A' (TN) for MBA and MIB Programmes

I BSc(Computer Science)[2017-2020]
Semester - II
Allied:DISCRETE MATHEMATICS - 207D
Multiple Choice Questions.

1. If there are n distinct components in a statement then there are \qquad combinations of values in the truth table.
A. $2^{\wedge} n$
B. $\mathrm{n}+1$
C. n
D. $\mathrm{n}+2$

ANSWER: A
2. If P then Q is called \qquad statement
A. Conjunction
B. disjunction
C. conditional
D. bi conditional

ANSWER: C
3. ($\mathrm{P}->\mathrm{Q}$)-> $(\wedge \mathrm{Q})$ is \qquad .
A. not a well formed formula
B. tautology
C. contradiction
D. well formed formula

ANSWER: A
4. A relation R in a set X is symmetric if \qquad .
A. $x R y, y R z=x R z$.
B. $x R y$
C. $x R y=>y R x$
D. $x R x$

ANSWER: C
5. If a relation is reflexive, then all the diagonal entries in the relation matrix must be \qquad .
A. 0
B. 1
C. 2
D. -1

ANSWER: B

6. If R is reflexive, symmetric and transitive then the relation is said to be \qquad .
A. Binary relation
B. Compatibility relation
C. Equivalence relation
D. Partial order relation

ANSWER: C
7. S-> aAB, AB -> bB, B -> b, A -> aB satisfies \qquad type of grammar
A. 0
B. 1
C. 0,1
D. 2

ANSWER: C
8. If there are more than 2 LMD for a string then it is said to be \qquad .
A. Ambigious
B. unambigious
C. language
D. finite state automata

ANSWER: A
9. A finite non-empty set of symbols is called \qquad .
A. alphabet
B. letter
C. string
D. language

ANSWER: A
10. The specification of proper construction of a sentence is called \qquad .
A. alphabet
B. letter
C. syntax
D. word

ANSWER: C
11. Context free grammar is also known as \qquad grammar.
A. type 0
B. type 1
C. type 2
D. type 3

ANSWER: C
12. A class of machine which accepts a \qquad language is called finite state automata.
A. type 0
B. type 1
C. type 2
D. type 3

ANSWER: D
13. Accepting states are denoted by \qquad .
A. circle
B. an arrow mark
C. double circle
D. straight line

ANSWER: C
14. For converting NDFA to DFA we should \qquad all the states which have no incoming.
A. add
B. subtract
C. multiply
D. delete

ANSWER: D
15. The set of all finite words over E is denoted by \qquad _.
A. E+
B. E^{*}
C. E
D. E-

ANSWER: A
16. Surjective function is also called \qquad .
A. onto
B. into
C. one to one
D. one one onto

ANSWER: A
17. One to one onto function is also called \qquad .
A. bijective
B. injective
C. surjective
D. composite function

ANSWER: A
18. The composition of function is associative but not \qquad .
A. commutative
B. associative
C. distributive
D. idempotent

ANSWER: A
19. A mapping x into itself is called \qquad .
A. reflexive
B. symmetric
C. transitive
D. equivalence

ANSWER: A
20. The duality law of $\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \mathrm{vT}$ is \qquad .
A. $\left(\mathrm{P}^{\wedge} \mathrm{Q}\right)^{\wedge} \mathrm{T}$
B. $(\mathrm{PvQ})^{\wedge} \mathrm{T}$
C. $(\mathrm{PvQ}) \mathrm{vF}$
D. $(\mathrm{PvQ})^{\wedge} \mathrm{F}$

ANSWER: D
21. A sum of the variables and their negations in a formula is called \qquad .
A. elementary sum
B. elementary product
C. cnf
D. dnf

ANSWER: A
22. A premise may be introduced at any point in the derivation is called \qquad .
A. Rule P
B. Rule P and Rule T
C. Rule T
D. Rule CP

ANSWER: A
23. A product of the variables and their negations in a formula is called \qquad .
A. elementary product
B. elementary sum
C. cnf
D. dnf

ANSWER: A
24. Min-terms of two statements are formed by introducing the connective \qquad .
A. Conjunction
B. disjunction
C. Conditional
D. negation

ANSWER: A
25. Any vertex having degree one is called \qquad .
A. Simple vertex
B. pendent vertex
C. regular vertex
D. complete vertex

ANSWER: B
26. A graph that has neither self loops nor parallel edges is called \qquad graph.
A. regular
B. simple
C. complete
D. null

ANSWER: B
27. A graph in which every vertex has same degree is called \qquad graph.
A. regular
B. simple
C. complete
D. null

ANSWER: A
28. Kn denotes \qquad graph.
A. regular
B. simple
C. complete
D. null

ANSWER: C
29. The number of vertices of odd degree in a graph is always \qquad .
A. odd
B. even
C. zero
D. one

ANSWER: B
30. A path of a graph is said to be \qquad if it contains all the edges of the graph.
A. eulerian
B. hamiltonian
C. tournament
D. planar

ANSWER: A
31. Traveling salesman problem is example for \qquad graph.
A. eulerian
B. hamiltonian
C. tournament
D. planar

ANSWER: B
32. If a node v is reachable from node u then the path of minimum length u to v is called \qquad .
A. reachability
B. node base
C. geodesic
D. accessibility

ANSWER: C
33. The eccentricity of a center in a tree is defined as \qquad of the tree.
A. radius
B. diameter
C. length
D. path

ANSWER: A
34. P -> Q, Q->R then \qquad .
A. P -> R
B. $R->P$
C. Q
D. R

ANSWER: A
35. If a normal form contains all minterms, then it is \qquad .
A. a tautology
B. a contradiction
C. a contingency
D. both a and b

ANSWER: A
36. PCNF is also called \qquad .
A. sum of product canonical form.
B. product of sum canonical form
C. sum canonical form
D. product canonical form

ANSWER: B
37. PDNF is also called \qquad
A. sum of product canonical form
B. product of sum canonical form
C. sum canonical form
D. product canonical form

ANSWER: A
38. Max-terms of two statements are formed by introducing the connective \qquad .
A. disjunction
B. conjunction
C. negation
D. conditional

ANSWER: A
39. The Subset relation on a set of sets is \qquad .
A. partial ordering
B. equivalence relation
C. reflexive and symmetric only
D. symmetric and transitive only

ANSWER: A
40. A relation R is defined on the set of integers as $x R y$ if and only if $(x+y)$ is even. Which of the following statement is TRUE?
A. R is not an equivalence relation.
B. R is an equivalence relation having one equivalence classes
C. R is an equivalence relation having two equivalence classes
D. R is an equivalence relation having three equivalence classes

ANSWER: C
41. If $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y})\}$ then R power $(-1)=$ \qquad .
A. $\{(1, a),(y, z)\}$
B. $\{(\mathrm{y}, 1),(\mathrm{z}, 1),(\mathrm{y}, 3)\}$
C. $\{(\mathrm{y}, \mathrm{a}),(1, \mathrm{z}),(3, \mathrm{y})\}$
D. $\{(\mathrm{y}, \mathrm{a}),(\mathrm{z}, \mathrm{a}),(3, \mathrm{y})\}$

ANSWER: B
42. Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{b}, \mathrm{b})\}, \mathrm{S}=\{(\mathrm{d}, \mathrm{b}),(\mathrm{c}, \mathrm{b}),(\mathrm{a}, \mathrm{d})\}$ then R composite $\mathrm{S}=$ \qquad
A. $\{(\mathrm{a}, \mathrm{e}),(\mathrm{c}, \mathrm{b}),(\mathrm{b}, \mathrm{e})\}$
B. $\{(\mathrm{d}, \mathrm{b}),(\mathrm{c}, \mathrm{b}),(\mathrm{a}, \mathrm{d})\}$
C. $\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{b})\}$
D. $\{(\mathrm{c}, \mathrm{b})\}$

ANSWER: D
43. Let R and S be two relations on a set of positive integers I. If $R=\{(a, 3 a+a)\}, S=\{(a, a+a)\}$ then R composition R composition $\mathrm{R}=$ \qquad .
A. $\{(a, 3 a+a)\}$
B. $\{(a, 9 a+a)\}$
C. $\{(a, 27 a+a)\}$
D. $\{(a, 9 a+c)\}$

ANSWER: C
44. The number of relations from $A=\{a, b, c\}$ to $B=\{1,2\}$ are \qquad .
A. 6
B. 8
C. 32
D. 64

ANSWER: D
45. The minimum number of edges in a connected graph with n vertices is \qquad .
A. n
B. $\mathrm{n}-1$
C. $\mathrm{n}+1$
D. $\mathrm{n}+2$

ANSWER: B
46. The number of distinct simple graphs with up to three nodes is \qquad .
A. 7
B. 9
C. 15
D. 25

ANSWER: A
47. A graph is planar if and only if it does not contain \qquad .
A. subgraphs homeomorphic to $\mathrm{k} 3 \& \mathrm{k} 3,3$
B. subgraphs isomorphic to k 5 or $\mathrm{k} 3,3$
C. subgraphs isomorphic to $\mathrm{k} 3 \& \mathrm{k} 3,3$
D. sub graphs homeomorphic to k 5 or $\mathrm{k} 3,3$

ANSWER: D
48. Maximum number of edges in an n-node undirected graph without self loops is \qquad .
A. $[n(n-a)] / 2$
B. $\mathrm{n}-1$
C. n
D. $[\mathrm{n}(\mathrm{n}+\mathrm{a})] / 2$

ANSWER: A
49. Number of distinct nodes in any elementary path of length p is \qquad .
A. p
B. $\mathrm{p}-1$
C. $\mathrm{p}+1$
D. $\mathrm{p}^{*} 1$

ANSWER: C
50. The total number of edges in a complete graph of n vertices is \qquad .
A. n
B. $n / 2$
C. $[n(n-a)] / 3$
D. $[n(n-a)] / 2$

ANSWER: D
51. A directed complete graph of n vertices contains \qquad .
A. one arrow between each pair of distinct vertices
B. two arrows between each pair of distinct vertices
C. $\mathrm{n}-1$ arrows between each pair of distinct vertices
D. path between every two distinct vertices

ANSWER: A
52. A directed graph $G=(V, E)$ is said to be finite if its \qquad .
A. set V of vertices is finite
B. set V of vertices \& set E of edges are finite
C. set E of edges are finite
D. no vertices \& edges are repeated

ANSWER: A
53. A state from which a deterministic finite state automata can never come out is called a \qquad .
A. trape state
B. starting symbol
C. transition table
D. transition diagram

ANSWER: A
54. If a compound statement is made up of three simple statements then the number of rows in the truth table is \qquad .
A. 2
B. 4
C. 6
D. 8

ANSWER: D
55. Let $\mathrm{R}=\{(3,3),(6,6),(9,9),(12,12),(3,6),(6,3),(3,9),(9,3),(9,12),(12,9)\}$ be a relation on the set A $=\{3,6,9,12\}$. The relation is \qquad
A. reflexive and transitive
B. reflexive and symmetric
C. symmetric and transitive
D. equivalence relation

ANSWER: D
56. Let $\mathrm{R}=\{(1, \mathrm{~b}),(3, \mathrm{~d}),(2, \mathrm{~b})\}$ and $\mathrm{S}=\{(\mathrm{b}, 4),(2,5),(\mathrm{d}, \mathrm{a})\}$ be a relation then R composition $\mathrm{S}=$ \qquad .
A. $\{(1, \mathrm{~b}),(3, \mathrm{~d}),(2, \mathrm{~b})\}$
B. $\{(1,4),(3, a),(2,4)\}$
C. $\{(4, \mathrm{~b}),(2,5),(3, \mathrm{a})\}$
D. $\{(1, \mathrm{~d}),(3, \mathrm{~b}),(2, \mathrm{c})\}$

ANSWER: B
57. If $R=\{(x, 2 x)\}$ and $S=\{(x, 4 x)\}$ then R composition $S=$ \qquad .
A. $\{(\mathrm{x}, 4 \mathrm{x})\}$
B. $\{(\mathrm{x}, 2 \mathrm{x})\}$
C. $\{(\mathrm{x}, 8 \mathrm{x})\}$
D. $\{(\mathrm{x}, 10 \mathrm{x})\}$

ANSWER: C
58. If $R=\{(x, 2 x)\}$ and $S=\{(x, 5 x)\}$ then R composition $S=$ \qquad .
A. $\{(\mathrm{x}, 4 \mathrm{x})\}$
B. $\{(\mathrm{x}, 2 \mathrm{x})\}$
C. $\{(\mathrm{x}, 8 \mathrm{x})\}$
D. $\{(\mathrm{x}, 10 \mathrm{x})\}$

ANSWER: D
59. A regular grammar contains rules of the form \qquad .
A. A tends to AB
B. $A B$ tends to a
C. A tends to aB
D. $A B$ tends to $C D$

ANSWER: C
60. A type-2 grammar contains the rules of the form is \qquad -
A. a tends to $A B$
B. AaB tends to a
C. A tends to aBC
D. $A B$ tends to $C D$

ANSWER: C
61. Let $\mathrm{R}=\{(1,3),(4,2),(2,2),(3,3),(1,1),(4,4)\}$ be a relation on the set $\mathrm{A}=\{1,2,3,4\}$. The relation R is
\qquad .
A. transitive
B. reflexive
C. not symmetric
D. function

ANSWER: C
62. The NAND statement is a combination of \qquad .
A. NOT and AND
B. NOT and OR
C. AND and OR
D. NOT or OR

ANSWER: A
63. The NOR statement is a combination of \qquad .
A. NOT and AND
B. NOT and OR
C. AND and OR
D. NOT or OR

ANSWER: B
64. If a relation is reflexive then in the graph of a relation there must be a loop at \qquad .
A. each node
B. only first node
C. any two nodes
D. only first and last nodes

ANSWER: A
65. Which of the following traversal techniques lists the nodes of binary search in ascending order?
A. pre order
B. post order
C. in order
D. root order

ANSWER: C
66. The grammar $\mathrm{G}=\{\{\mathrm{S}\},\{0,1\}, \mathrm{P}, \mathrm{S}\}\}$ where $\mathrm{P}=\{\mathrm{S}$ tends to $0 \mathrm{~S} 1, \mathrm{~S}$ tends to S 1$\}$ is a \qquad .
A. recursively enumerable grammar.
B. regular grammar
C. context sensitive grammar
D. context free grammar

ANSWER: D
67. Which of the following regular expressions identifiers are true?
A. $\left(\mathrm{r}^{*}\right)^{*}=\mathrm{r}$
B. $(\mathrm{r}+\mathrm{s})^{*}=\mathrm{r}^{*} . \mathrm{s}^{*}$
C. $r^{*} . s^{*}=r^{*}+s^{*}$
D. $(\mathrm{r} . \mathrm{s})^{*}=\mathrm{r}^{*} / \mathrm{s}^{*}$

ANSWER: A
68. In a grammar or language LAMDA is used to denote \qquad .
A. empty word
B. entire set
C. set of words
D. set of letters

ANSWER: A
69. The number of letters in a word is called \qquad .
A. length
B. string
C. syntax
D. alphabet

ANSWER: A
70. If r is a regular expression then r^{*} is a \qquad expression.
A. regular
B. irregular
C. isomorphic
D. homomorphic

ANSWER: A
71. An example for regular grammar is \qquad .
A. S tends to Ab
B. $A B$ tends to $S A B$
C. S tends to $a B$
D. S tends to aBB

ANSWER: C
72. If all the productions have single non-terminal in the left hand side then the grammar defined is grammar.
A. context free
B. context sensitive
C. regular
D. phrase structure

ANSWER: A
73. In Backus Naur Form the symbol:: $=$ is used instead of \qquad .
A. $\}$
B. tends to
C. 〈>
D. \$

ANSWER: B
74. Any subset L of A^{*} is called \qquad over A.
A. Language
B. Syntax
C. Alphabet
D. Word

ANSWER: A
75. Let S be a start symbol and S-> aA, A -> BA, A -> a, B -> b be the productions in a grammar then one of the string derived form the grammar is \qquad .
A. baba
B. bbaa
C. abba
D. aabb

ANSWER: C
76. If S is a start symbol and $S->A B, A->a B, B->b$ are the productions then a string generated by the grammar is \qquad .
A. baa
B. aba
C. abb
D. bab

ANSWER: C
77. In FSA ,the notation for M being in state $S 0$, reading the input symbol a, moving one cell right and reaching the state S 1 is given by \qquad .
A. $f(\mathrm{Si}, \mathrm{x})=\mathrm{Sj}$
B. $f(S 0, a)=S 1$
C. $f(\mathrm{Si}, \mathrm{a})=\mathrm{Sj}$
D. $\mathrm{f}(\mathrm{S} 0, \mathrm{x})=\mathrm{S} 1$

ANSWER: B
78. If "S -> aS, S -> a" are the productions in a grammar G , then the grammar is called \qquad .
A. regular grammar
B. phrase structure grammar
C. context free grammar
D. context sensitive grammar

ANSWER: A
79. The rank of the incidence matrix of any connected graph G with n vertices is \qquad .
A. n
B. $\mathrm{n}+1$
C. $\mathrm{n}-1$
D. $\mathrm{n}-2$

ANSWER: C
80. The number of 1's in each row of an incidence matrix of a graph G is equal to \qquad .
A. the degree of the corresponding vertices
B. the sum of degrees of all vertices
C. the degree of the initial vertex
D. the degree of the terminal vertex

ANSWER: A
81. Each column of an incidence matrix of a graph G has exactly \qquad .
A. one 1's
B. two 1 's
C. one 2 's
D. two 2's

ANSWER: B
82. An undirected graph is tripartite if and only if it has no circuits of \qquad lengths
A. odd
B. even
C. distinct
D. equal

ANSWER: A
83. A graph is bipartite if and only if its chromatic number is \qquad .
A. 1
B. 2
C. odd
D. even

ANSWER: B
84. G is strongly connected implies \qquad .
A. G is unilaterally connected.
B. G is bilaterally connected
C. G is unilaterally connected
D. G has more than one component

ANSWER: A
85. The number of pendant vertices in a full binary tree with n vertices is \qquad .
A. $(\mathrm{n}-\mathrm{a}) / 2$
B. $(\mathrm{n}-1) / 2$
C. $(\mathrm{n}+\mathrm{a}) / 2$
D. $n / 2$

ANSWER: C
86. The number of vertices in a full binary tree is \qquad .
A. odd
B. even
C. equal
D. 0

ANSWER: A
87. A binary tree with 2 k vertices of level k has at least \qquad vertices.
A. 2 power k
B. 2 power ($\mathrm{k}-1$)
C. 2 power (k-1)-1)
D. 2 power $(k+1)-1$

ANSWER: D
88. For a symmetric digraph, the adjacency matrix is \qquad .
A. symmetric
B. antisymmetric
C. asymmetric
D. symmetric and asymmetric

ANSWER: A
89. The diagonal entries of $\mathrm{A}^{\wedge} \mathrm{T}$ where A is the adjacency matrix are the \qquad .
A. outdegrees of the node
B. indegrees of the nodes
C. unit degree of the nodes
D. in \& out degrees of the nodes

ANSWER: A
90. DFSA and NDFSA represent the \qquad language.
A. regular
B. context free
C. context sensitive
D. phrase structure

ANSWER: A
91. The chromatic number of the chess board is \qquad .
A. 1
B. 2
C. 3
D. 4

ANSWER: B
92. The total number of degrees of an isolated node is \qquad .
A. 0
B. 1
C. 2
D. 3

ANSWER: A
93. If G is a connected planar graph then it has a vertex of degree \qquad .
A. 3 or less
B. 4 or less
C. 5 or less
94. A product of the variable and their negation in a formula is called \qquad .
A. an elementary sum
B. an elementary product
C. a well-formed formula
D. an equivalence of relation formula

ANSWER: B
95. A formula consisting of disjunctions of min-terms is called \qquad .
A. DNF
B. CNF
C. PDNF
D. PCNF

ANSWER: C
96. The less than relation < on real is \qquad .
A. a partial ordering since it is asymmetric and reflexive
B. a partial ordering since it is anti-symmetric and reflexive
C. not a partial ordering since it is not asymmetric and not reflexive
D. not a partial ordering since it is not anti-symmetric and not reflexive

ANSWER: D
97. A relation R in X is said to be a \qquad , if it is reflexive and symmetric.
A. void relation
B. circular
C. partial order relation
D. compatibility relation

ANSWER: D
98. The set $X^{*} X$ itself defines a relation in X is called a \qquad relation.
A. void
B. universal
C. partial
D. equivalence

ANSWER: B
99. A self complemented distributive lattice is called \qquad .
A. boolean algebra
B. modular lattice
C. complete lattice
D. self dual lattice

ANSWER: A
100. Every finite subset of a lattice has \qquad .
A. a Least Upper Bound and Greatest Lower Bound
B. many Least Upper Bounds and a Greatest Lower Bound
C. many Least Upper Bounds and many Greatest Lower Bounds
D. either some Least Upper Bounds or some Greatest Lower Bounds

ANSWER: A
101. If the lattice (C , less than or equal to) is complemented chain then \qquad .
A. \mid C \mid less than or equal to 1
B. $|\mathrm{C}|$ less than or equal to 2
C. $|\mathrm{C}|$ greater than 1
D. C doesn't exist

ANSWER: B
102. A formula consisting of conjunctions of max-terms is called \qquad .
A. DNF
B. CNF
C. PCNF
D. PDNF

ANSWER: C
103. The set of all divisors of 24 are \qquad .
A. $\{1,2,3,4,6,8,12,24\}$
B. $\{2,3,4,6,8,12\}$
C. $\{1,3,6,12$, $\}$
D. $\{2,4,6,8\}$

ANSWER: A
104. Which of the following is Absorption Law?
A. $a^{*} \mathrm{a}<=>\mathrm{a}$
B. $a+\left(a^{*} b\right)<=>a$
C. $\mathrm{a}^{*} \mathrm{~b}<=>\mathrm{a}^{*} \mathrm{a}$
D. $\left(\mathrm{a}^{*} \mathrm{~b}\right) * \mathrm{c}<=>\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)$

ANSWER: B
105. In a bounded lattice, an element b belongs to L is called a complement of an element a belongs to L if
\qquad .
A. $a^{*} b=0$
B. $a+b=1$
C. both a and b
D. none

ANSWER: C
106. If each non-empty subset of a lattice has a least upper bound and greatest lower bound then the lattice is called \qquad _.
A. complete
B. associative
C. absorption
D. commutative

ANSWER: A
107. A \qquad is a complemented distributive lattice.
A. boolean homomorphism
B. boolean algebra
C. boolean isomorphism
D. boolean function

ANSWER: D
108. Boolean expression except 0 expressed in an equivalent form is called \qquad .
A. canonical
B. sum
C. product
D. standard

ANSWER: A
109. \qquad relations are useful in solving certain minimization problems of switching theory.
A. Void
B. Universal
C. Compatibility
D. Equivalence

ANSWER: C
110. The number of elements in a square matrix of order n is \qquad .
A. n power 3
B. n power 4
C. n power 5
D. n power 2

ANSWER: D
111. Every non-trivial tree has at least \qquad vertices of degree one.
A. 1
B. 2
C. 3
D. 4

ANSWER: B
112. A \qquad is an edge e such that $w(G-e)>w(G)$.
A. cut vertex of G
B. cut edge of G
C. ends of G
D. path of G

ANSWER: B
113. Every connected graph contains a \qquad .
A. tree
B. sub tree
C. spanning tree
D. spanning subtree

ANSWER: C
114. A minimal non-empty edge cut of G is called a \qquad .
A. bond
B. cycle
C. path
D. tour

ANSWER: A
115. A connected graph that has no cut vertices is called a \qquad .
A. block
B. bond
C. cycle
D. tour

ANSWER: A
116. Every block with at least three vertices are \qquad connected.
A. 1
B. 2
C. 3
D. 4

ANSWER: B
117. A graph is Eulerian if it contains \qquad .
A. Euler tour
B. Euler trail
C. Hamiltonian path
D. Euler path

ANSWER: A
118. Hamilton cycle is a cycle that contains every \qquad of G.
A. path
B. cycle
C. vertex
D. edge

ANSWER: C
119. Collection of human beings with 4 heads, 2 legs and two hands is a \qquad .
A. null set
B. finite set
C. infinite set
D. equal set

ANSWER: A
120. A set containing no element is called \qquad .
A. null set
B. finite set
C. infinite set
D. equal set

ANSWER: A
121. $\mathrm{A}=\{1,3,5,7,9\}$ is a \qquad .
A. null set
B. finite set
C. singleton set
D. infinite set

ANSWER: B
122. The number of Indians in the world is \qquad .
A. finite set
B. universal set
C. infinite set
D. equal set

ANSWER: A
123. If in the truth table the answer column has the truth values both TRUE and FALSE then it is said to be
\qquad _.
A. tautology
B. contradiction
C. contingency
D. equivalence relation

ANSWER: C
124. To prove the statement P tautologically implies the statement Q, it is enough to prove that \qquad .
A. P conditional Q is a contradiction
B. P conditional Q is a tautology
C. P biconditional is a contradiction
D. P biconditional Q is a tautology

ANSWER: B
125. To prove the statement P is tautologically equivalent to the statement Q, it is enough to prove that
\qquad —.
A. P conditional Q is a contradiction
B. P conditional Q is a tautology
C. P biconditional Q is a contradiction
D. P biconditional Q is a tautology

ANSWER: D
126. Let $\mathrm{R}=\{(1,2),(3,4),(2,6$.$\} and \mathrm{S}=\{(4,3),(2,5),(6,6)\}$ be a relation then R composite $\mathrm{S}=$ \qquad .
A. $\{(1,5),(3,3),(2,6)\}$
B. $\{(1,5),(3,6),(2,5)\}$
C. $\{(4,4),(2,5),(3,3)\}$
D. $\{(1,1),(3,3),(2,2)\}$

ANSWER: A
127. The binary relation $R=\{(0,0),(1, a)\}$ on $A=\{0,1,2,3$,$\} is$ \qquad .
A. reflexive, not symmetric, transitive
B. not reflexive, symmetric, transitive
C. reflexive, symmetric, not transitive
D. reflexive, not symmetric, not transitive

ANSWER: B
128. There are only five distinct Hasse diagrams for partially ordered sets that contain \qquad elements.
A. 2
B. 3
C. 4
D. 6

ANSWER: B
129. The production S tends to $a B$ is of the type \qquad grammar.
A. 0
B. 1
C. 2
D. all the above

ANSWER: D
130. The production S tends to A is of the type \qquad grammar.
A. 0
B. 1
C. 2
D. all the above

ANSWER: A
131. A regular grammar contain rules of the form is \qquad .
A. A tends to AB
B. $A B$ tends to a
C. A tends to aB
D. $A B$ tends to $C D$

ANSWER: C
132. If an edge e is said to join the vertices u and v then the vertices u and v are called \qquad .
A. initial vertices
B. terminal vertices
C. ends of e
D. all the above

ANSWER: B
133. Edges intersect only at their ends are called \qquad .
A. planar
B. loop
C. link
D. non plannar

ANSWER: A
134. Two vertices which are incident with the common edge are called \qquad vertices.
A. distinct
B. directed
C. adjacent
D. loops

ANSWER: C
135. An edge with identical ends is called \qquad .
A. complete graph
B. bipartite graph
C. loops
D. link

ANSWER: C
136. An edge with same ends is called \qquad .
A. complete graph
B. bipartite graph
C. loops
D. link

ANSWER: D
137. In a graph if few edges have directions and few do not have directions then the graph is called
\qquad
A. multi graph
B. directed graph
C. undirected graph
D. mixed graph

ANSWER: D
138. If two edges have same vertices as its terminal vertices those edges are called \qquad .
A. parallel
B. adjacent
C. incident
D. distinct

ANSWER: A
139. Each edge has one end in set X and one end in set Y then the graph (X, Y) is called \qquad graph.
A. bipartite
B. simple
C. complete
D. trivial

ANSWER: A
140. The graph defined by the vertices and edges of a \qquad is bipartite.
A. square
B. cube
C. single
D. both square and cube

ANSWER: B
141. To any graph G there corresponds a vertex in a matrix called \qquad matrix.
A. incidence
B. adjacency
C. square
D. null

ANSWER: A
142. If H is a sub graph of G then G is a \qquad of H .
A. proper sub grapth
B. inducted sub graph
C. spanning subgraph
D. super graph

ANSWER: D
143. If the graph G1 and G2 has no vertex in common then it is said to be \qquad .
A. disjoint
B. edge disjoint
C. union
D. intersection

ANSWER: A
144. The degree of vertex v in G is \qquad .
A. number of edges of G incident with v
B. number of loops in G
C. number of links in G
D. number of sub graph in G

ANSWER: A
145. If the edges of a walk W are distinct then W is called \qquad .
A. path
B. trial
C. walk
D. tour

ANSWER: D
146. If the vertices of a walk W are distinct then W is called \qquad .
A. path
B. trial
C. walk
D. tour

ANSWER: A
147. Each loop counting has \qquad edges.
A. 1
B. 2
C. 3
D. 4

ANSWER: B

148. The statements that we consider initially are simple statements called \qquad statements.
A. molecular
B. compound
C. atomic
D. simple

ANSWER: C
149. The statements formed from atomic statements are called \qquad statements.
A. molecular
B. compound
C. atomic
D. simple

ANSWER: A
150. The negation of the statement is formed by introducing \qquad .
A. not
B. and
C. or
D. if

ANSWER: A

Staff Name

Paulraj A.

