

Dr.G.R.Damodaran College of Science

(Autonomous, affiliated to the Bharathiar University, recognized by the UGC)Reaccredited at the 'A' Grade Level by the NAAC and ISO 9001:2008 Certified CRISL rated 'A' (TN) for MBA and MIB Programmes

> I BSc(Computer Science)[2017-2020] Semester - II Allied:DISCRETE MATHEMATICS - 207D Multiple Choice Questions.

1. If there are n distinct components in a statement then there are _____ combinations of values in the truth table.

A. 2^n B. n+1 C. n

D. n+2

ANSWER: A

2. If P then Q is called ______ statement
A. Conjunction
B. disjunction
C. conditional
D. bi conditional
ANSWER: C

3. (P->Q)-> (^Q) is _____.
A. not a well formed formula
B. tautology
C. contradiction
D. well formed formula
ANSWER: A

- 4. A relation R in a set X is symmetric if _____.
 A. xRy, yRz => xRz.
 B. xRy
 C. xRy=>yRx
 D. xRx
 ANSWER: C
- 5. If a relation is reflexive, then all the diagonal entries in the relation matrix must be_____.
 - A. 0
 - **B**. 1
 - C. 2
 - D. -1

ANSWER: B

 6. If R is reflexive, symmetric and transitive then the relation is said to be A. Binary relation B. Compatibility relation C. Equivalence relation D. Partial order relation ANSWER: C
7. S -> aAB, AB -> bB, B -> b, A -> aB satisfies type of grammar A. 0 B. 1 C. 0,1 D. 2 ANSWER: C
 8. If there are more than 2 LMD for a string then it is said to be A. Ambigious B. unambigious C. language D. finite state automata ANSWER: A
 9. A finite non-empty set of symbols is called A. alphabet B. letter C. string D. language ANSWER: A
 10. The specification of proper construction of a sentence is called A. alphabet B. letter C. syntax D. word ANSWER: C
 11. Context free grammar is also known as grammar. A. type 0 B. type 1 C. type 2 D. type 3 ANSWER: C
12. A class of machine which accepts a language is called finite state automata A. type 0

- B. type 1
- C. type 2

D. type 3 ANSWER: D

 13. Accepting states are denoted by A. circle B. an arrow mark C. double circle D. straight line ANSWER: C 14. For converting NDFA to DFA we should all the states which have no incoming. A. add B. subtract C. multiply
D. delete ANSWER: D
 15. The set of all finite words over E is denoted by A. E+ B. E* C. E D. E- ANSWER: A
 16. Surjective function is also called A. onto B. into C. one to one D. one one onto ANSWER: A
 17. One to one onto function is also called A. bijective B. injective C. surjective D. composite function ANSWER: A
 18. The composition of function is associative but not A. commutative B. associative C. distributive D. idempotent ANSWER: A
19. A mapping x into itself is calledA. reflexiveB. symmetric

C. transitive D. equivalence ANSWER: A 20. The duality law of (P^Q)vT is _____. A. (P^Q)^T B. (PvQ)^T C. (PvQ)vF D. (PvQ)^F ANSWER: D 21. A sum of the variables and their negations in a formula is called ______. A. elementary sum **B.** elementary product C. cnf D. dnf **ANSWER:** A 22. A premise may be introduced at any point in the derivation is called ______. A. Rule P B. Rule P and Rule T C. Rule T D. Rule CP ANSWER: A 23. A product of the variables and their negations in a formula is called ______. A. elementary product B. elementary sum C. cnf D. dnf ANSWER: A 24. Min-terms of two statements are formed by introducing the connective ______. A. Conjunction B. disjunction C. Conditional D. negation ANSWER: A 25. Any vertex having degree one is called _____. A. Simple vertex B. pendent vertex

- C. regular vertex
- D. complete vertex
- ANSWER: B
- 26. A graph that has neither self loops nor parallel edges is called _____ graph. A. regular

B. simple C. complete D. null ANSWER: B

ANSWER: B 27. A graph in which every vertex has same degree is called ______ graph. A. regular B. simple C. complete D. null ANSWER: A 28. Kn denotes _____ graph. A. regular B. simple C. complete D. null ANSWER: C 29. The number of vertices of odd degree in a graph is always_____ A. odd B. even C. zero D. one ANSWER: B 30. A path of a graph is said to be _____ if it contains all the edges of the graph. A. eulerian B. hamiltonian C. tournament D. planar ANSWER: A 31. Traveling salesman problem is example for _____ graph. A. eulerian **B.** hamiltonian C. tournament D. planar ANSWER: B 32. If a node v is reachable from node u then the path of minimum length u to v is called _____. A. reachability B. node base C. geodesic D. accessibility ANSWER: C

33. The eccentricity of a center in a tree is defined as _____ of the tree.

A. radius B. diameter C. length D. path ANSWER: A

34. P -> Q , Q ->R then____ A. P -> R B. R -> P

C. Q D. R ANSWER: A

35. If a normal form contains all minterms, then it is _____.

A. a tautology B. a contradiction C. a contingency D. both a and b ANSWER: A

36. PCNF is also called _____.

A. sum of product canonical form.
B. product of sum canonical form
C. sum canonical form
D. product canonical form
ANSWER: B

- 37. PDNF is also called _____
 - A. sum of product canonical form
 - B. product of sum canonical form
 - C. sum canonical form
 - D. product canonical form
- ANSWER: A

38. Max-terms of two statements are formed by introducing the connective ______

- A. disjunction
- B. conjunction
- C. negation
- D. conditional
- ANSWER: A

39. The Subset relation on a set of sets is _____.

- A. partial ordering
- B. equivalence relation
- C. reflexive and symmetric only
- D. symmetric and transitive only
- ANSWER: A

40. A relation R is defined on the set of integers as xRy if and only if (x+y) is even. Which of the following statement is TRUE?

A. R is not an equivalence relation.

B. R is an equivalence relation having one equivalence classes

C. R is an equivalence relation having two equivalence classes

D. R is an equivalence relation having three equivalence classes ANSWER: C

41. If $R = \{(1, y), (1, z), (3, y)\}$ then R power (-1)=_____. A. $\{(1, a), (y, z)\}$ B. $\{(y, 1), (z, 1), (y, 3)\}$ C. $\{(y, a), (1, z), (3, y)\}$ D. $\{(y, a), (z, a), (3, y)\}$ ANSWER: B

42. Let R ={ (a,b),(c,d),(b,b)}, S = {(d,b),(c,b),(a,d)} then R composite S = ______
A. {(a,e),(c,b),(b,e)}
B. {(d,b),(c,b),(a,d)}
C. {(a,b),(b,b)}
D. {(c,b)}
ANSWER: D

43. Let R and S be two relations on a set of positive integers I. If $R = \{(a, 3a+a)\}, S = \{(a,a+a)\}$ then R composition R composition R = _____.

A. {(a,3a+a)} B. {(a,9a+a)} C. {(a,27a+a)} D. {(a,9a+c)} ANSWER: C

44. The number of relations from $A = \{a,b,c\}$ to $B = \{1,2\}$ are ______.

A. 6 B. 8 C. 32 D. 64 ANSWER: D

45. The minimum number of edges in a connected graph with n vertices is ______.

A. n B. n-1 C. n+1 D. n+2 ANSWER: B

46. The number of distinct simple graphs with up to three nodes is ______.

A. 7

- **B**. 9
- C. 15

D. 25 ANSWER: A

47. A graph is planar if and only if it does not contain _____.
A. subgraphs homeomorphic to k3 & k3,3
B. subgraphs isomorphic to k5 or k3,3
C. subgraphs isomorphic to k3 & k3,3
D. sub graphs homeomorphic to k5 or k3,3
ANSWER: D

48. Maximum number of edges in an n-node undirected graph without self loops is _____.

A. [n(n-a)]/2 B. n-1 C. n D. [n(n+a)]/2 ANSWER: A

49. Number of distinct nodes in any elementary path of length p is ______.

A. p B. p-1 C. p+1 D. p*1 ANSWER: C

50. The total number of edges in a complete graph of n vertices is ______.

A. n B. n/2 C. [n(n-a)]/3 D. [n(n-a)]/2 ANSWER: D

51. A directed complete graph of n vertices contains

A. one arrow between each pair of distinct vertices

B. two arrows between each pair of distinct vertices

C. n-1 arrows between each pair of distinct vertices

D. path between every two distinct vertices

ANSWER: A

52. A directed graph G = (V, E) is said to be finite if its _____.

A. set V of vertices is finite

B. set V of vertices & set E of edges are finite

C. set E of edges are finite

D. no vertices & edges are repeated

ANSWER: A

53. A state from which a deterministic finite state automata can never come out is called a ______

A. trape state

B. starting symbol

C. transition table D. transition diagram ANSWER: A

54. If a compound statement is made up of three simple statements then the number of rows in the truth table is ______.

A. 2 B. 4 C. 6 D. 8 ANSWER: D

56. Let R={(1,b),(3,d),(2,b)} and S={(b,4),(2,5),(d,a)} be a relation then R composition S=____.
A. {(1,b),(3,d),(2,b)}
B. {(1,4),(3,a),(2,4)}
C. {(4,b),(2,5),(3,a)}
D. {(1,d),(3,b),(2,c)}
ANSWER: B

57. If R= {(x, 2x)} and S= {(x, 4x)} then R composition S=____.
A. {(x, 4x)}
B. {(x, 2x)}
C. {(x, 8x)}
D. {(x, 10x)}
ANSWER: C

58. If $R = \{(x, 2x)\}$ and $S = \{(x, 5x)\}$ then R composition S =____. A. $\{(x, 4x)\}$

B. $\{(x, 4x)\}\$ B. $\{(x, 2x)\}\$ C. $\{(x, 8x)\}\$ D. $\{(x, 10x)\}\$ ANSWER: D

59. A regular grammar contains rules of the form _____.
A. A tends to AB
B. AB tends to a
C. A tends to aB
D. AB tends to CD
ANSWER: C

60. A type-2 grammar contains the rules of the form is____. A. a tends to AB

- B. AaB tends to aC. A tends to aBCD. AB tends to CD
- ANSWER: C

61. Let $R=\{(1, 3), (4, 2), (2, 2), (3, 3), (1, 1), (4, 4)\}$ be a relation on the set $A=\{1, 2, 3, 4\}$. The relation R is

A. transitive B. reflexive C. not symmetric D. function ANSWER: C

62. The NAND statement is a combination of _____.
A. NOT and AND
B. NOT and OR
C. AND and OR
D. NOT or OR
ANSWER: A

63. The NOR statement is a combination of ______.
A. NOT and AND
B. NOT and OR
C. AND and OR
D. NOT or OR
ANSWER: B

64. If a relation is reflexive then in the graph of a relation there must be a loop at _____.

- A. each node B. only first node
- C. any two nodes
- D. only first and last nodes
- ANSWER: A

65. Which of the following traversal techniques lists the nodes of binary search in ascending order?

- A. pre order B. post order
- C. in order
- D. root order
- ANSWER: C

66. The grammar $G = \{\{S\}, \{0,1\}, P, S\}\}$ where $P = \{S \text{ tends to } 0S1, S \text{ tends to } S1\}$ is a ______

- A. recursively enumerable grammar.
- B. regular grammar
- C. context sensitive grammar
- D. context free grammar

ANSWER: D

67. Which of the following regular expressions identifiers are true?

A. (r*)* = r B. (r+s)* = r* . s* C. r*.s* = r* + s* D. (r.s)* = r*/s* ANSWER: A

68. In a grammar or language LAMDA is used to denote _____.

A. empty word B. entire set

C. set of words

D. set of letters

ANSWER: A

69. The number of letters in a word is called ______.

- A. length
- B. string
- C. syntax
- D. alphabet
- ANSWER: A

70. If r is a regular expression then r* is a _____ expression.

- A. regular
- B. irregular
- C. isomorphic
- D. homomorphic
- ANSWER: A
- 71. An example for regular grammar is _____.
 A. S tends to Ab
 B. AB tends to SAB
 C. S tends to aB
 D. S tends to aBB
 ANSWER: C

72. If all the productions have single non-terminal in the left hand side then the grammar defined is

_____grammar. A. context free

- B. context sensitive
- C. regular
- D. phrase structure

ANSWER: A

73. In Backus Naur Form the symbol:: = is used instead of _____.

- A. { }
- B. tends to

C. <> D. \$ ANSWER: B

74. Any subset L of A* is called _____ over A.
A. Language
B. Syntax
C. Alphabet
D. Word
ANSWER: A

75. Let S be a start symbol and S -> aA, A -> BA, A -> a, B -> b be the productions in a grammar then one of the string derived form the grammar is _____.

A. baba

B. bbaa

C. abba

D. aabb

ANSWER: C

76. If S is a start symbol and S \rightarrow AB, A \rightarrow aB, B \rightarrow b are the productions then a string generated by the grammar is _____.

A. baa B. aba C. abb D. bab ANSWER: C

77. In FSA ,the notation for M being in state S0, reading the input symbol a, moving one cell right and reaching the state S1 is given by _____.

A. f(Si, x) = SjB. f(S0, a) = S1C. f(Si, a) = SjD. f(S0, x) = S1ANSWER: B

78. If "S -> aS, S -> a" are the productions in a grammar G, then the grammar is called_____.

A. regular grammar

B. phrase structure grammar

C. context free grammar

D. context sensitive grammar

ANSWER: A

79. The rank of the incidence matrix of any connected graph G with n vertices is _____.

A. n B. n+1 C. n-1 D. n-2 ANSWER: C 80. The number of 1's in each row of an incidence matrix of a graph G is equal to _____. A. the degree of the corresponding vertices B. the sum of degrees of all vertices C. the degree of the initial vertex D. the degree of the terminal vertex ANSWER: A Each column of an incidence matrix of a graph G has exactly _____. A. one 1's B. two 1's C. one 2's D. two 2's ANSWER: B 82. An undirected graph is tripartite if and only if it has no circuits of _____ lengths A. odd B. even C. distinct D. equal ANSWER: A 83. A graph is bipartite if and only if its chromatic number is _____. A. 1 **B**. 2 C. odd D. even **ANSWER: B** 84. G is strongly connected implies _____. A. G is unilaterally connected. B. G is bilaterally connected C. G is unilaterally connected D. G has more than one component ANSWER: A 85. The number of pendant vertices in a full binary tree with n vertices is _____ A. (n-a)/2B. (n-1)/2C. (n+a)/2D. n/2 ANSWER: C 86. The number of vertices in a full binary tree is _____. A. odd B. even

13 of 23

C. equal D. 0

ANSWER: A

87. A binary tree with 2k vertices of level k has at least ______ vertices.

A. 2 power k B. 2 power (k-1) C. 2 power (k-1)-1) D. 2 power (k+1)-1 ANSWER: D

88. For a symmetric digraph, the adjacency matrix is ______.
A. symmetric
B. antisymmetric
C. asymmetric
D. symmetric and asymmetric

ANSWER: A

89. The diagonal entries of A A^T where A is the adjacency matrix are the _____.

- A. outdegrees of the node
- B. indegrees of the nodes
- C. unit degree of the nodes
- D. in & out degrees of the nodes
- ANSWER: A

90. DFSA and NDFSA represent the _____ language.

- A. regular
- B. context free
- C. context sensitive
- D. phrase structure
- ANSWER: A

91. The chromatic number of the chess board is _____.

- A. 1
- B. 2
- C. 3
- D. 4
- ANSWER: B

92. The total number of degrees of an isolated node is _____.

- A. 0
- **B**. 1
- <mark>C. 2</mark>
- D. 3

ANSWER: A

93. If G is a connected planar graph then it has a vertex of degree _____

- A. 3 or less
- B. 4 or less
- C. 5 or less

D. 6 or less ANSWER: C

94. A product of the variable and their negation in a formula is called ______

A. an elementary sum
B. an elementary product
C. a well-formed formula

D. an equivalence of relation formula

ANSWER: B

95. A formula consisting of disjunctions of min-terms is called ______.

A. DNF

B. CNF

C. PDNF

D. PCNF

ANSWER: C

96. The less than relation < on real is ______.

A. a partial ordering since it is asymmetric and reflexive

B. a partial ordering since it is anti-symmetric and reflexive

C. not a partial ordering since it is not asymmetric and not reflexive

D. not a partial ordering since it is not anti-symmetric and not reflexive

ANSWER: D

97. A relation R in X is said to be a _____, if it is reflexive and symmetric.

- A. void relation
- B. circular

C. partial order relation

D. compatibility relation

ANSWER: D

98. The set X*X itself defines a relation in X is called a _____relation.

A. void

B. universal

C. partial

D. equivalence

ANSWER: B

99. A self complemented distributive lattice is called ______.

A. boolean algebra

B. modular lattice

C. complete lattice

D. self dual lattice

ANSWER: A

100. Every finite subset of a lattice has _____

A. a Least Upper Bound and Greatest Lower Bound

B. many Least Upper Bounds and a Greatest Lower Bound

C. many Least Upper Bounds and many Greatest Lower Bounds D. either some Least Upper Bounds or some Greatest Lower Bounds ANSWER: A

101. If the lattice (C, less than or equal to) is complemented chain then ______.

A. |C| less than or equal to 1

B. |C| less than or equal to 2

C. \mid C \mid greater than 1

D. C doesn't exist

ANSWER: B

102. A formula consisting of conjunctions of max-terms is called ______.

A. DNF

B. CNF

C. PCNF

D. PDNF

ANSWER: C

103. The set of all divisors of 24 are _____.
A. {1, 2, 3, 4, 6, 8, 12, 24}
B. {2, 3, 4, 6, 8, 12}
C. {1, 3, 6, 12,}
D. {2, 4, 6, 8}
ANSWER: A

104. Which of the following is Absorption Law?
A. a*a <=>a
B. a+(a*b)<=> a
C. a*b <=>a*a
D. (a*b)*c <=>a*(b*c)
ANSWER: B

105. In a bounded lattice, an element b belongs to L is called a complement of an element a belongs to L if

A. a*b=0 B. a+b=1 C. both a and b D. none ANSWER: C

106. If each non-empty subset of a lattice has a least upper bound and greatest lower bound then the lattice is called ______.

A. complete B. associative C. absorption D. commutative ANSWER: A

- 107. A ______ is a complemented distributive lattice.
 - A. boolean homomorphism
 - B. boolean algebra
 - C. boolean isomorphism
 - D. boolean function
- ANSWER: D

108. Boolean expression except 0 expressed in an equivalent form is called _____.

- A. canonical
- B. sum
- C. product
- D. standard
- ANSWER: A

109. ______relations are useful in solving certain minimization problems of switching theory.

- A. Void
- B. Universal
- C. Compatibility
- D. Equivalence
- ANSWER: C

110. The number of elements in a square matrix of order n is _____.

- A. n power 3
- B. n power 4
- C. n power 5
- D. n power 2
- ANSWER: D

111. Every non-trivial tree has at least _____ vertices of degree one.

- A. 1
- **B**. 2
- C. 3
- D. 4
- ANSWER: B
- 112. A _____ is an edge e such that w(G-e)>w(G).
 - A. cut vertex of G
 - B. cut edge of G
 - C. ends of G
 - D. path of G
- ANSWER: B
- 113. Every connected graph contains a _____.
 A. tree
 B. sub tree
 C. spanning tree
 D. spanning subtree
 ANSWER: C

 114. A minimal non-empty edge cut of G is called a A. bond B. cycle C. path D. tour ANSWER: A
 115. A connected graph that has no cut vertices is called a A. block B. bond C. cycle D. tour ANSWER: A
116. Every block with at least three vertices areconnected. A. 1 B. 2 C. 3 D. 4 ANSWER: B
 117. A graph is Eulerian if it contains A. Euler tour B. Euler trail C. Hamiltonian path D. Euler path ANSWER: A
 118. Hamilton cycle is a cycle that contains everyof G. A. path B. cycle C. vertex D. edge ANSWER: C
 119. Collection of human beings with 4 heads, 2 legs and two hands is a A. null set B. finite set C. infinite set D. equal set ANSWER: A
 120. A set containing no element is called A. null set B. finite set C. infinite set

D. equal set

ANSWER: A

121. A = {1,3,5,7,9} is a _____.
A. null set
B. finite set
C. singleton set
D. infinite set
ANSWER: B

122. The number of Indians in the world is ______.
A. finite set
B. universal set
C. infinite set
D. equal set
ANSWER: A

123. If in the truth table the answer column has the truth values both TRUE and FALSE then it is said to be

A. tautology B. contradiction C. contingency D. equivalence relation ANSWER: C

124. To prove the statement P tautologically implies the statement Q, it is enough to prove that ______.

A. P conditional Q is a contradiction

B. P conditional Q is a tautology

C. P biconditional is a contradiction

D. P biconditional Q is a tautology

ANSWER: B

125. To prove the statement P is tautologically equivalent to the statement Q, it is enough to prove that

A. P conditional Q is a contradiction
B. P conditional Q is a tautology
C. P biconditional Q is a contradiction
D. P biconditional Q is a tautology
ANSWER: D

126. Let $R = \{(1,2), (3,4), (2,6)\}$ and $S = \{(4,3), (2,5), (6,6)\}$ be a relation then R composite S =_____.

A. $\{(1,5),(3,3),(2,6)\}$

B. $\{(1,5),(3,6),(2,5)\}$

- C. $\{(4,4),(2,5),(3,3)\}$
- D. {(1,1),(3,3),(2,2)}

ANSWER: A

127. The binary relation $R = \{(0, 0), (1, a)\}$ on $A = \{0, 1, 2, 3, \}$ is _____. A. reflexive, not symmetric, transitive

- B. not reflexive, symmetric, transitive
- C. reflexive, symmetric, not transitive
- D. reflexive, not symmetric, not transitive

ANSWER: B

128. There are only five distinct Hasse diagrams for partially ordered sets that contain _____elements.

- A. 2
- **B**. 3
- C. 4
- D. 6

```
ANSWER: B
```

129. The production S tends to aB is of the type _____grammar.

- <mark>A. 0</mark>
- **B.** 1
- C. 2

D. all the above

ANSWER: D

130. The production S tends to A is of the type _____grammar.

A. 0 B. 1 C. 2 D. all the above

ANSWER: A

131. A regular grammar contain rules of the form is _____.A. A tends to AB

B. AB tends to a C. A tends to aB D. AB tends to CD ANSWER: C

132. If an edge e is said to join the vertices u and v then the vertices u and v are called ____.

- A. initial vertices
- B. terminal vertices
- C. ends of e
- D. all the above
- ANSWER: B
- 133. Edges intersect only at their ends are called ______.
 A. planar
 B. loop
 C. link
 D. non plannar
 ANSWER: A

134. Two vertices which are incident with the common edge are called ______vertices.

A. distinct B. directed C. adjacent D. loops ANSWER: C

135. An edge with identical ends is called ______.
A. complete graph
B. bipartite graph
C. loops
D. link
ANSWER: C

136. An edge with same ends is called ______ A. complete graph

B. bipartite graph

C. loops

D. link

ANSWER: D

137. In a graph if few edges have directions and few do not have directions then the graph is called

A. multi graph

B. directed graph

C. undirected graph

D. mixed graph

ANSWER: D

138. If two edges have same vertices as its terminal vertices those edges are called _____.

A. parallel

B. adjacent

C. incident

D. distinct

ANSWER: A

139. Each edge has one end in set X and one end in set Y then the graph (X, Y) is called _____ graph.

A. bipartite

B. simple

C. complete

D. trivial

ANSWER: A

140. The graph defined by the vertices and edges of a ______ is bipartite.

A. square

B. cube

C. single

D. both square and cube

ANSWER: B

141. To any graph G there corresponds a vertex in a matrix called _____ matrix. A. incidence B. adjacency C. square D. null ANSWER: A 142. If H is a sub graph of G then G is a _____ of H. A. proper sub grapth B. inducted sub graph C. spanning subgraph D. super graph ANSWER: D 143. If the graph G1 and G2 has no vertex in common then it is said to be _____. A. disjoint B. edge disjoint C. union D. intersection ANSWER: A 144. The degree of vertex v in G is _____ A. number of edges of G incident with v B. number of loops in G C. number of links in G D. number of sub graph in G ANSWER: A 145. If the edges of a walk W are distinct then W is called _____. A. path B. trial C. walk D. tour ANSWER: D 146. If the vertices of a walk W are distinct then W is called _____ A. path B. trial C. walk D. tour ANSWER: A 147. Each loop counting has ______ edges. A. 1 **B**. 2 C. 3 D. 4

ANSWER: B

148. The statements that we consider initially are simple statements called ______statements.

A. molecular

B. compound

C. atomic

D. simple

ANSWER: C

149. The statements formed from atomic statements are called ______statements.

- A. molecular
- B. compound
- C. atomic

D. simple

ANSWER: A

150. The negation of the statement is formed by introducing ______.

- A. not
- B. and

C. or

D. if

ANSWER: A

Staff Name Paulraj A .