1. Assertion A : The consumption of water increases with increase in the distribution pressure.
Reason R : Higher distribution pressure causes more loss and waste of water.
Select your answer according to the coding system given below
a) Both A and R are true and R is the correct explanation of A.
b) Both A and R are true but R is not the correct explanation of A.
c) A is true but R is false.
d) A is false but R is true.
Ans: a

2. The per capital consumption of a locality is affected by
i) climatic conditions
ii) quality of water
iii) distribution pressure
The correct answer is
a) only (i)
b) both (i) and (ii)
c) both (i) and (iii)
d) all (i), (ii) and (iii)
Ans: d

3. Which of the following causes a decrease in per capita consumption?
 a) use of metering system
 b) good quality of water
 c) better standard of living of the people
 d) hotter climate
 Ans:a

4. The hourly variation factor is usually taken as
 a) 1.5
 b) 1.8
 c) 2.0
 d) 2.7
 Ans:a

5. If the average daily consumption of a city is 100,000 m3, the maximum daily consumption on peak hourly demand will be
 a) 100000m3
 b) 150000m3
 c) 180000m3
 d) 270000 m3
 Ans:d

6. The distribution mains are designed for
 a) maximum daily demand
 b) maximum hourly demand
 c) average daily demand
d) maximum hourly demand on maximum day
Ans:d

7. As compared to geometrical increase method of forecasting population, arithmetical increase method gives
a) lesser value
b) higher value
c) same value
d) accurate value
Ans:a

8. The population of a town in three consecutive years are 5000, 7000 and 8400 respectively. The population of the town in the fourth consecutive year according to geometrical increase method is
a) 9500
b) 9800
c) 10100
d) 10920
Ans:d

9. The suitable method of forecasting population for a young and rapidly increasing city is
a) arithmetical increase method
b) geometrical increase method
c) incremental increase method
d) graphical method
Ans:b

10. The depression of water table in a well due to pumping will be maximum
a) at a distance R from the well
b) close to the well
c) at a distance R/2 from the well
d) none of the above
where R is the radius of influence
Ans:b