For More Questions <u>*Click Here</u>*</u>

1) A periodic signal is

a. May be represented by g(t) = g(t + T₀)
b. Value may be determined at any point
c. Repeats itself at regular intervals
d. All of the above

ANSWER: (d) All of the above

2) Sine wave is a

a. Periodic signal
b. Aperiodic signal
c. Deterministic signal
d. Both a and c

ANSWER: (a) Periodic signal

3) An even function f(x) for all values of x and x holds

a. f(x) = f(-x)
b. f(x) = -f(x)
c. f(x) = f(x)f(-x)
d. None of the above

ANSWER: (a) f(x) = f(-x)

4) Random signals is

- a. May be specified in time
- **b.** Occurrence is random
- c. Repeat over a period
- d. None of the above

ANSWER: (b) Occurrence is random

5) Unit step function is

a. Exists only for positive side

b. Is zero for negative side

- **c.** Discontinuous at time t=0
- d. All of the above

ANSWER: (d) All of the above

6) In Unit impulse function

- **a.** Pulse width is zero
- b. Area of pulse curve is unity
- c. Height of pulse goes to infinity
- d. All of the above

ANSWER: (d) All of the above

7) For a Unit ramp function area of pulse curve is unity

- a. Discontinuous at time t=0
 b. Starts at time t=0 and linearly increases with t
 c. Both a and b
- **d.** None of the above

ANSWER: (b) Starts at time t=0 and linearly increases with t

8) The spectrum of the sampled signal may be obtained without overlapping only if

a. $f_s \ge 2f_m$ **b.** $f_s < 2f_m$ **c.** $f_s > f_m$ **d.** $f_s < f_m$

ANSWER: (a) $f_s \ge 2f_m$

9) The desired signal of maximum frequency w_m centered at frequency w=0 may be recovered if

- a. The sampled signal is passed through low pass filter
- **b.** Filter has the cut off frequency wm
- c. Both a and b
- d. None of the above

ANSWER: (c) Both a and b

10) A distorted signal of frequency $f_{\tt m}$ is recovered from a sampled signal if the sampling frequency $f_{\tt s}$ is

a. $f_s > 2f_m$ **b.** $f_s < 2f_m$ **c.** $f_s = 2f_m$ **d.** $f_s \ge 2f_m$

ANSWER: (b) $f_s < 2f_m$